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There are two interesting tendencies in treating spline interpolation. The
first is an abstract spline theory within the framewark of functional analysis.
In this conpection the work of de Boor and Lynch {7}, Jerome and
Schumaker [18), Jerome and Varga [19], Afteia [2,3), Anselone and
Laurent [1], Sard [24], Aubin [4), Lucas [20], Scheffold {26] as well as
Delvos and Schempp [9, 10] should be mentioned, the latter of which have
introduced the concept of a spline system. The second tendency is concerned
with bi- and multivariate spline problems. Here de Boor [6], Birkhoff, Schultz,
and Varga (5], Ritter {22, 23], Schultz [27], Gordon [12], Mansfield [21], and
Tippenhauer (29] should be meationed. Some of these authors use tensor
products for investigating multivanate problems.

It is the purpose of the present paper to generalize the concept of a spline
system in order to consider multivariate spline interpolation problems by
tensor product methods.

To achieve this, we first give in Section 1 the basic definition of a spline
system (using weaker conditions than those of Delvos and Schempp [9]).
Subsequently, existence and uniqueness of a spline element will be character-
ized separately, and two approximation properties of sphine elements will be
proved. The notion of a spline system given here enables us to give two
construction principles for obtaining new spline systems from known ones:
These methods are additivity and the use of fensor products. They are treated
in Sections 2 and 3, respectively. These construction principles enable us to
prove some results on tensor product spline systems as well as to deal with
spline problems related to the work of Gordon [12] (see Section 4). Finally,
in Section §, we consider interpolating spline systems in one and twao variables.
Most of the sphne interpolation problems that have been investigated can be
described in the framework of interpolating spline systems.

Our notion of a spline system dispenses with a topology on the spline
ground space. Thus we restrict our investigations on spline interpolation to
those topics that may be dealt with within the framework of (algebraic) vector
spaces as spline ground spaces. Topological aspects of spline systems and
their tensor praducts will be treated elsewhere.
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Some parts of the theory given in this paper have been developed in [16]
under stronger conditions on the spline ground spaces.

1. SPLINE SYSTEMS AND THEIR MINIMUM PROPERTIES

A quadruple (X, P, U, H) will be called a prespline system provided that the
following conditions hold:

(S1) X is a real (or complex) vector space, H is a real (resp. complex)
prehilbert space with the scalar product (&, %) — (k| %) and the canonical
norm

WA= (IR} (he H).

(S2) P: X — X is a linear idempotent mapping.
(S3) U: X — H is a linear mapping.

Let us denote prespline systems (and later on, spline systems) by script
letters £, 2,..., and let

Fo(x) :={te X: Pt = Px} for every xe X.

In view of ordinary spline theory, X stands for the spline ground space,
H replaces the Hilbert space L%, P generalizes the spline interpolation
projection, whereas U may be specialized, in a concrete case, to some
differential operator.

Given a prespline system, we define the notions of a spline element and
a spline system.

DeFINITION 1. Let 2: = (X, P, U, H) be a prespline system and let x € X.
Then s € X is called a spline element belonging to x with respect to 2, if the
following conditions hold:

(SE0) Ps = Px (ie., s€ _%(x)).
(SE1) || Us| < || Ut| forall te £u(x).

The set of all spline elements belonging to x € X with respect to & will be
denoted by F(x).
DEFINITION 2. A prespline system #: = (X, P, U, H) is called a spline
system, if the following additional condition holds:
(S84 ImUP | Im UP'.

Here Im @ and below Ker @ designate the image and the kernel, respec-
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tively, of a linear mapping @, and P’ is the supplementary (projection) operator
of P having the following properties:

(P1) P’ = I-— P (I: identity on X};
(P2) P': X — Xis a linear idempotent mapping;
(P3) Im P’ = Ker P, Ker # = Im P.

We now characterize the validity of (54).

THEOREM 1. Let & = (X, P, U, H) be a prespline system. Then &
satisfies (S4) if and only if for each x € X we have Px € Sp(x).

Proof. Suppose that Px e Yp(x) for all x e X. Assume there exists an
hy€Im UP and an ) € Im UP’ such that

(hy | hy') = o # 0.

Then A, # 0, and hence (k) |4') =P8 > 0. Since hyecIm UP and
hy € Im UP’, there exist x, € Im P and x," € Im P’ which satisfy

Uxqy=hy and Uxy = hy, respectively.
Consider x; = x, — (o/B) - x,’ € X. By (P3) it follows that

(0.1

Px, == Pxy — 8 Pxy = Pxy = x,.

By hypothesis, x, is a spline element belonging to x, , i.e., X, € %(x;). On
the other hand

(Uxy | Uxy) = (Uxy | Uxg) — %(Uxo | Uxy)

— 79— (U, | Uxy) + %‘;ﬁ (Uxy' | Uxy)

— (Ux, | Uxp) — 12
B b

hence
T Ux | <l Uxp |l

This contradicts the fact that x, = Px; € S5(x,).

Conversely, let # = (X, P, U, H) be a spline system, and let x€ X. We
have to show the relation Px € ¥(x) for all x € X. (SE 0) is immediate. To
prove (SE 1) we notice that for each 7 € #p(x) we have

tex + Ker P = Px + Ker P.
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Thus one can express ¢ in the form
t=Px—+1t (' eKer P = Im P').
From this we get

Ut =UPx+ Ut = UPx + UP'Y.

(S4) yields
| Ul = || UPx | + || UP't" |%,

and hence

[ UPx|| < || Ut for any te fp(x).

This concludes the proof.

Now we investigate the question of uniqueness of a spline element. In general
there is more than one spline element for a given x € X. In the case of the
Lg-splines this fact was pointed out by Jerome and Schumaker [18] and
Jerome and Varga [19].

THEOREM 2. Let & = (X, P, U, H) be a spline system. Then the following
requirements are equivalent:

(S5) Ker UnKer P = (0).
(85) KerUCIm P.
(S5 For any x € X, Sp(x) consists of a single element, namely Px.

In (S5), (0) designates the frivial vector space having only one element, If
one of these conditions is satisfied, # = (X, P, U, H) will be said to be
unique.

Proof. We show (S85) = (85") = (85") = (89).
Assume (85) and let x € Ker U. By (P1) we have x = Px + P’x, hence,
according to (S4),

O0=[Ux|P = UPx|?+ [ UPx|?

ie, UP'x = 0. Thus P'xeKer U. By (P3), P'xeKer P, and (85) vields
P'x = 0. Therefore x = Px and hence x € Im P, Thus Ker U CIm P.

Now suppose Ker U C Im P, and let x € X. According to (SE 0) each spline
element s € %»(x) can be written in the form

s = Px -+ s’ (s"eKer P = Im P’).
Hence
| Us|® = | UPx|® + || Us" |~
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Since s € Fp(x), it follows that || Us' || = 0; thus s’ e Ker U, ie.,, s’ €eIm P
by (S5'). On the other hand, s’ € Ker P. Thus we have s' = 0 so that (S857) is
satisfied.

Finally, suppose (85”) holds, and let x € X be given. Assume there exists a
teKer PnKer U, ¢t # 0. Consider

s=Px+teX.

Obviously, Ps = Px. By (S4) we have
| Usi* = | UPx|? 4 || Ut |2

Since || Ut |[* = 0, it follows that s € F»(x), and, since s # Px, this contradicts
(S57).

COROLLARY 1. Let# =(X,P,U, H)be a spline system and let xe X. Then:
(i) p(x) is a linear manifold in X:
Fp(x) = Px + (Ker U n Ker P).

(i) The set Fp of all spline elements {each of which belongs to an x € X)
is a subspace of X

p = ) Fp(x) =Im P @ (Ker U Ker P).

xeX

(i) Given any xc X, there exists a unique spline element in Im P
belonging to x, namely Px, i.e.,

F(x) N Im P = {Px}.
Px is called the standard spline element belonging to x € X.

Remark. Given a spline system & = (X, P, U, H),then &' = (X, P', U, H)
is a spline system, too. It is called the supplementary spline system with respect
to Z. If Ker U # (0), then at most one of these spline systems is unique.

A different notion of a spline system, which is based on the conditions
(81)-(S5) as well as on further topological properties concerning the spaces X
and H and the mappings P and U was given by Delvos and Schempp [9].
Those spline systems may be considered as unique topological spline systems
in our terminology. To construct new spline systems by tensor products
(see Section 3) we need the notion of a spline system as given in definition 2.
In general, tensor products of spline systems in the sense of Delvos and
Schempp [9] fail to be spline systems in that sense (cf. Theorem 6). In the
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following, unless otherwise stated, we take as a “spline system” the concept
defined in Definition 2.

Delvos and Schempp [9] proved two minimum properties which generalize
known results (cf. de Boor and Lynch [7]). We shall prove these minimum
properties under the weaker conditions demanded for our notion of a spline
system.

THEOREM 3. Let # = (X, P, U, H) be a (not necessarily unique) spline
system; let x € X; and let sy € Sp(x). Then the following minimum properties
hold:

(SE1) [ Us,ll <[ Utll for all t € Fp(x).
(SE2) [|U(x — sl <l U(x — s)|| for all s€ S .

Proof. (SE 1) is immediate. It turns out that (SE 2) may be considered as
the supplementary minimum property with respect to (SE 1).

To show this, we first prove the following inequality for the standard spline
element Px, which lies, by Theorem 1, in F5(x):

| Ulx — Px)|| < |} U(x — 5) forall selm P.

Indeed, given any s; € Im P = Ker P’, there exists a t, € x + Ker P’ with
Si=Xx—t, (.Y
satisfying P't; = P’x. Since #' = (X, P’, U, H) is a spline system, we have
| UP'x|l < || Uty .
for ¢, according to (1.1). As P’ = I — P, it follows that
| Ux — Px)| < || Ux —sp)ll  forall s;elmP, (1.2)

since s; was an arbitrary element of Im P.
Now each spline element s, € F(x) may be written in the form

so = Px + 1, (t, € Ker U N Ker P).
From Ut, = 0 we get Us, = UPx, and thus
Ulx — s¢) = U(x — Px). (1.3)
By Corollary 1, (ii), any s € %5 has the unique representation

S =8+t (s;€Im P, t, € Ker U N Ker P).
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Since Ut, = 0, it follows that
Ux—s)=Ux—s,) (s,6ImP).

From this, (1.2) and (1.3) we obtain
| Ulx — sl <l Ulx — )|

for any s, € F»(x) and any s € S .

2. CONSTRUCTION OF SPLINE SYSTEMS BY ADDITIVITY

In this section we are going to point out a construction principle
for spline systems of the following kind: Given two spline systems
P =X, P,,U H)and Z, = (X, P,, U, H), when is (X, P, + P,, U, H)
also a spline system? The subsequent Theorem 4 will be applicable in
connection with tensor products of spline systems (see Section 4).

THEOREM 4. Let &, = (X, P,, U, H) and &, = (X, Py, U, H) be two
spline systems such that
P,-P,=P,-P =0
Then Z := (X, P, + P,, U, H), too, is a spline system. Z is unique if at least
one of the P; is unique.

Proof. First we remark that P, + P,: X — X is an idempotent linear
mapping. Since P, - P, = 0, we have Im P, C Ker P, = Im P}’, and hence
Im UP, CIm UP,’. Since £, is a spline system, by (S4)

Im UP, | Im UP, . 2.0
Again by (S4), we get
(UPx|\UI—P)y)=0 forall (x,y)eX X X. 2.2)
From (2.1) it follows that
(UPyx | —UP,y) =0 forall (x,y)eX x X. 2.3)

Addition of (2.2) and (2.3) yields
(UPyx | Ul — P, — P))y) = (UPx | UP,+P) ) =0 2.4

for all (x, y) € X X X. Similarly,
(UPux | UWP,+P)Yy)=0 2.5
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for all (x, y) € X X X. Hence

(UP,+ P)x |UP,+Py) y) =0
forall(x,y)e X x X, ie.,

Im U(P, 4+ P,) | Im U(P, + Py).

Thus Z is a spline system.
To prove the uniqueness part of Theorem 4, we first show

Ker(P, + P,) C (Ker P, N Ker P,). (2.6)
Let x € Ker(P;, + Py), i.e., (P; + P;)x = 0. Then
0 = Py(P; + Py)x = (P;Py + P;P,)x = P3x = P;x
(i = 1, 2), and hence (2.6).

Suppose one of the spline systems &, or &, is unique, say &, . Since
Ker(P, + P,) CKer P, , it follows by (S5) that

Ker(P; + P,) N Ker U = (0).

This concludes the proof.

3. TENSOR PRODUCTS OF SPLINE SYSTEMS

In this section we use temsor products to get multivariate spline systems.
We restrict ourselves to the bivariate case. By induction, our results may be
extended to higher dimensions.

Our main result states that the tensor product of two spline systems is
itself a spline system. Before proving it we briefly recall some facts concerning
tensor products of vector spaces and linear mappings (cf., Greub [13]).

Let X and Y be real (or complex) vector spaces, and X , X, subspaces of X.
Then:

TH XGKINNXLQN=ENX)RY.
(TI) @ RX)NT ®X) =YX NX).

Given linear mappings

P X — X, Y -7,
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where X, X, Y and ¥ are real (or complex) vector spaces, following identities
hold:

(T2) Im(p ® ¢) = (Im ¢) ® (Im ),
(T3) Ker(p @ ¢) = (Ker 9) @ ¥ + X ® (Ker ).

Let X and Y be real (respectively complex) vector spaces, and let
¢: X — X, J: V-7
be linear mappings. Then we have

(T4) R (P =@ @O ).

We introduce now a scalar product on the (algebraic) tensor product of two
(real or complex) prehilbert spaces H and K with scalar products (5 | Ay
and (k, | k,)x , respectively. To this end, let {4,};.; and {k;},., be, respectively,
Hamel bases of H and K. Given two elements z; , z, € H ® K:

Z1=ZZaij'xi®yj,

i€l jeJ

2y = Z Z by - xx ® y1 5
kel leJ
where each of the inequalities a;; 7 0, b;; 5 0 is satisfied for only a finite
number of pairs (i, j))eI X Jresp. (K, )eI X J, we define (cf. Dixmier [11],
Schatten [25]):

(z1 Z)HEK \= Z Z Z Z a;; * Ekl s (x| x)e(yi L vk -
iel jeJ kel leJ

It turns out that (z; | zo)pex is @ scalar product on H @ K which arises
canonically from the scalar products given on H and K. The value of
(z1 | z9uex is independent of the choice of the Hamel bases {};, and
{ki};es . In writing H ® K, where H and K are prehilbert spaces, we mean the
algebraic tensor product of H and K provided with this canonical scalar product
which makes H & K a prehilbert space.

DeriniTION 3. Let? = (X, P, U, H)and 2 = (Y, Q, V, K) be two spline
systems (or prespline systems). Then

Z2@2=XQY,PRQO UKV, HRK)
is called the tensor product of # and 2.

The following lemma is obvious:
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LemMA 1. Let # = (X, P, U, H) and 2 = (Y, Q, V, K) be two prespline
systems. Then their tensor product, (X ®Y,PRQ, UK V,HR®K), is
again a prespline system.

THEOREM 5. Given two spline systems P = (X, P, U H) and 9 =
Y,Q,V.KLthenZ? Q2 =X®Y,PRQ, UKV, H K)isalso a spline
system.

Proof. By Lemma 1 we only have to verify the relation (S4) for the tensor
product mappings:

ImUV)-(PRQ) LImU® V) -(P® Q).
To show this, we observe that, by (P3) and (I3),

Im(PRQ) =KerPRQO=(Ker P)® Y+ X ®(Ker Q)
= Ker P ® Ker Q @® Ker P ® Ker Q' @ Ker P* @ Ker Q,

@ denoting direct sum. Therefore, any zeIm(P ® Q) has a unique
decomposition

z = il + ‘§2 + '§3
such that
5= x,®y, (x.cKerP,y, eKer0Q),
=1
=73 %Q®j  (EeKerP,j eKer Q)
v=1
=) £ ®9, (£ eKerP',$,eKer Q).
o=1
Let
F= > a,®b, (a,€eIm P, b, eIm Q)
o=1

be an arbitrary element of Im P ® Q@ = Im P & Im @ (by (T2)).

Consider

(U ® M| (U V)2)nex — (Z Ua, ® Vb,

S Ux, @ Vyu)
n=1

o=1

Wa, | Ux )y - (Vb | ¥y )k .

s

)}

a=1

1

T
[

H®K
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Since, by (S4), Ug,€Im UP and Ux,eIm UP’ for all oce{l,...,s} and
pe{l,.., m}, as Z is a spline system, we have

(URWV 3| (URV)E)gex =0

for all Z,€Im P ® Q. In an analogous manner we can show that
(U Mz I(URViEduex = 3, 3. (Ua, | Us)u - (Vb, | V3, )k =0
=1 y=1
for all 5, Im P ® Q, since Z is a spline system. Similarly, by (S4) for 2,

(U V) | (US Vignox =3 Y Ua, | Us, ) (Vo | V3,)x = 0

o=1 p=1

for all %, Im P ® Q. Thus we have for all ze Im(P ® Q) = Ker P ® Q:
UV LImURYV) (PR O,

ie.,
mURV) (PO LImURV) (PR QA).

The last theorem assures that given any z = Y., x, ® y,€ X ® Y, the
element (P ® Q)z lies in Fpg (). The standard spline element (P & Q)z
can easily be computed if the standard spline elements Px,and Qy, (1 << v < n)
are known, since

P®Oz=7Y Pr,® 0.
v=1

We now ask: when is (P ® Q)z the only spline element belonging to z with
respect to Z & 2?

THEOREM 6. Let 2R 2 =X RY,PRQURV,HRKRK) be the
tensor product of two spline systems. Q) 2 is unique if and only if at least one
of the following statements holds:

A X=(@0Q)orY = (0.
(ii)) Ker U = (0) and Ker V = (0).
(iii) Ker P = (0) and Ker @ = (0).
(iv) Ker U = (0), Ker P = (0) and Ker V " Ker Q = (0).
(v) Ker V = (0), Ker Q = (0) and Ker U n Ker P = (0).

Proof. We first show the sufficiency of any of the conditions (i)~(v). To do
this we have to show that each of these conditions implies:

Ker(U ® V) N Ker(P ® Q) = (0). G3.1)



296 WERNER HAUSSMANN

By (T3),
Ker(U® V)= (Ker U)® ¥ + X & (Ker V),
Ker(P ® Q) = (Ker P) ® Y + X ® (Ker Q).

If X = (0), then Ker U = (0), and hence Ker(U ® V) = (0); thus # )R 2
is unique. Similarly, if ¥ = (0).

If Ker U = Ker V' = (0), then Ker(U ® V) = (0), and hence Z ® 2 is
unique.

If (iii) is satisfied, then Ker(P? ® Q) = (0), and thus Ker(U ® V)N
Ker(P ® Q) = (0).

Suppose (iv) holds. Then:

(3.2)

Ker(U® V)= X @ Ker V,
Ker(P® Q) = X ® Ker Q,
and by (T1"),
Ker(U® V)N Ker(P ® Q) = X ® (Ker ¥V N Ker Q) = (0).
If we assume (v), property (T1) yields
Ker(U @ V)N Ker(P ® Q) = (Ker UNn Ker P) ® Y = (0).

The neccessity is proved as follows. Suppose (3.1) is satisfied. Assume none
of the conditions

(A) Ker U = (0) and Ker P = (0),
(B) Ker U = (0) and Ker V' = (0),
(C) Ker P = (0) and Ker @ = (0),
(D) Ker ¥V = (0) and Ker @ = (0)

holds. Then it follows that
(Ker P) ® (Ker V) + (Ker U) ® (Ker Q) # (0). (33
Since, by (3.2),
(Ker P) ® (Ker V) + (Ker U) ® (Ker Q) C Ker(U ® V) N Ker(P ® Q),

(3.3) contradicts (3.1). Hence at least one of the conditions (A), (B), (C) or (D)
must be satisfied.
If (A) holds, then

Ker(U ® V)N Ker(P ® Q) = X @ (Ker V N Ker Q);
hence X = (0) or Ker V' N Ker Q = (0). Thus (i) of (iv) is satisfied.
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(B) is (ii) and (C) is (iii).
Finally, let (D) be satisfied. Then we have

Ker(UR@ V)N Ker(P®R® Q) = (Ker UNnKer P) ® Y.

This yields (i) or (v).

From Theorem 6 we see that the validity of the uniqueness condition (S5)
for both (X, P, U, H) and (Y, Q, V, K) does not imply that their tensor
product is also unique. This is why the tensor product of two spline systems
in the sense of Delvos and Schempp [9] fails to be such a spline system.

4. SOME BIVARIATE SPLINE SYSTEMS AND THEIR MINIMUM PROPERTIES

Using Theorems 4 and 5 we can construct some bivariate spline systems
and prove corresponding minimum properties.

COROLLARY 2. Let two spline systems # = (X,P,U,H) and 2 =
(Y,0,V,K) be given. If ze X ® Y and sy Fpgo(z), then the following
bivariate minimum properties hold:

D) U R V)sollnex < WU @ V) sllagx for every s € Fpgol2),

(i) U V)z — soluex < (U & V)(z — s)lugxfor every s € Fpga.

In particular, taking z = }:;1 x, ® ¥, , we have the following properties of the
bivariate standard spline element:

(i) WU ® V)(Tae Px. ® O9)lnex < I(U @ Msllugx
SJor all s € Fogo(2),

(i) UV, (X, ® Y, - Px, @ O )lwox <I(UQ V)z-9llrex

forany se ¥pgg.

COROLLARY 3. Let? = (X, P, U, Hyand 2 = (¥, Q, V, K) be two spline
systems. Then Z .= (X Q Y, PRQ+P QRQ, URV,HRK)Iis also a
spline system. Hence the following minimum properties hold, given any
z€X ® Y and s, € S4(2):

0 WU Vs, lrex < (U ® V)s lugx forall s e Z"@Q-&-P'@O'(Z),
(i) U V)z — sdluex < (U ® V)z — llugx for all s S .

By a similar construction we get the following bivariate spline system,
which is closely related to a problem considered by Gordon [12].
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THEOREM 7. Let # = (X, P, U, H) and 2 = (Y, Q, V, K) be two spline
systems, and I. X — X and J: Y -~ Y the identity mappings on X and Y,
respectively. Then,

T =XRYVI®RQ+PRJI-PRQURV, HRK)

is also a spline system. It is unique if both P and 3 are unique. Let ze X Q) Y
and sy € $4(z). Then

O U R Vs, lrgx <IU @ V)s ”Héxfor all s e fI®O+P®J—P®O(Z),
(i) (U ® V)z — sollluox < (U ® V)(z — sliwgx for allse S5 .

In particular, we have for the standard spline element,

@) KWRVHNR®QE+PRJ—PRDzlnex <INV Visiagxfor

all se figorrer-reof2),
(i) U@ VNP ® O)zluex <I(UQ VX)z — Sluex forallse S5 .

Proof. We have only to show that the hypotheses of Theorem 4 are
satisfied. To this end, observe that:

IR0+ PRJ-PRQ2=IXQ0+P®Q.
Thus
IR PRI)=U-P)R®(Q-2)=0
and
PR)UIRO=EF DR 0 =0
By Theorem 5,
U =XRY,I®QURV,HRK)

and
YV i=XRY,PRQ,URV,HRK)

are spline systems, and hence 7 is a spline system.
Now we establish the uniqueness condition

Ker URQVCImIRO+PRI—PRO),

assuming that (X, P, U, H) and (Y, Q, V, K) satisfy (S5).
To prove this, let S and T be two linear projection operators mapping
a vector space Z into itself. If ST = 0, then for any ze Im T

z=Tz=Tz+4 8z = (T + S)z,
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i.e., ze Im(T + S) and hence Im T C Im(7 + §). Similarly, if 7S = 0, then
Im S CIm(T + ).
Applying this to our problem, we get

ImPRJCImM(PRJ+IR®RQ— PR O), @.n

ImIQQOCIm(PRJ+IRQ — PR Q). 4.2)
Since 2 and 2 are unique spline systems,

KerU)® YC(ImP)® Y = Im(P ® J),

XY@ EKer V)CX ®(Im Q) = Im(Z & Q).
By (4.1) and (4.2),

Ker(UR PV =XQ@KerV)+ KerU)® Y
CIm(PRJ+I®Q—PXRQ).

A connection with the work of Gordon [12] is obtained by specializing P
and Q to be operators arising from interpolation functionals, and by providing
X and Y with appropriate topologies. Topological results concerning spline
systems will be given elsewhere, but a general treatment of spline systems
arising from interpolation problems is given in the next section.

5. INTERPOLATING SPLINE SYSTEMS

Most spline systems that occur in applications arise from certain spline
interpolation problems; for example, from natural polynomial spline functions
(cf. Greville [14]), L-splines (cf. Schultz and Varga [28], and Delvos and
Schempp [10]) and Lg-splines (cf. Jerome and Schumaker [18]).

To deal with the corresponding concept of an interpolating spline system
let us recall the following notion of an interpolation problem (cf. [17]).

Given # = (X, F; 9, ,..., D), where X is a real or complex vector space,
F an m-dimensional subspace of X, and @, ,..., D, linear functionals on X,
one can raise the following interpolation problem:

Let x € X. Does there exist an f€ F satisfying

S(f)=2.x (A<p<m? (5.1
Is it unique?
An answer is given by the following lemma (Davis [8]):

LEMMA 2. Let F = (x, F; ¢y ,..., b) be an interpolation problem. A
necessary and sufficient condition that for every x € X there exists exactly
one f€F satisfying (5.1) is that the restrictions @, | F,..., D,, | F of the ®,’s
to F are linearly independent in F*, the algebraic dual of F.

In this case # will be called a unique interpolation problem.

640/11/4-2
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DeriNITION 4. F = (X, F; D, ,..., P ; U, H) is called an interpolating
spline system, provided:

(IS1) Fo:=(X,F;¢y,.., dw) is a unique (real or complex) inter-
polation problem.

(IS2) H s a real (respectively, complex) prehilbert space with scalar
product (/| #) and canonical norm || A || = (A | k)12

(IS3) U: X — His a linear mapping.

(IS4) The following orthogonality relation holds:

U(F) 1 U( () Ker @u).
u=1
There is a close relation between interpolating spline systems and finire
spline systems (i.e., spline systems (X, P, U, H) with dim Im P < o):

PropoSITION 1. Given an interpolating spline system % = (X, F;
D, ,...,D, ; U H), there is a uniquely determined finite spline system
P = (X, P, U, H) generated by F in a canonical way. Conversely, any finite
spline system & = (X, P, U, H) may be generated by some interpolating spline
system which is, however, not uniquely determined.

Proof. Let #F = (X, F;9,,...,9,:U, H) be an interpolating spline
system. Since the corresponding interpolation problem has a unique solution,
there exists a unique dual base {f, ,..., fms C F satisfying

& _ {0 for mFv l<psm
Qu(fv)_auv_‘;l for p=v (lguﬁl’l)'

Now
Prx ¥ £ @),
u=1

is a linear projection operator. It remains to show that (IS 4) implies (S84).
Observe that UF = Im UP. For the supplementary operator P’ we have
Im P' = Ker P = ()., Ker &, . The last equality is proved as follows: Given
xeKer P, ie,

0=Px=7Y f, 0,0,
u=1
the linear independence of the f,’s vields @.(x) = 0 (1 < p < m); hence
x € (™, Ker ®, . Obviously ., Ker @, C Ker P. Thus (IS 4) implies

Im UP | Im UP’,

and so Z = (X, P, U, H) is a spline system which is finite since dim Im P =
dmF = m < 0.
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Now let Z = (X, P, U, H) be a finite spline system with dim Im P =
m < oo. Then there exist m linearly independent linear functionals
@1 5eees P € (I P)*. Let {f, ,..., fn} be the corresponding dual base in Im P,
and define @, = ¢, - P. Then we have

and, since

U(lm P) =Im UP | Im UP’ = U( () Ker Qiu),

=1

it follows that % = (X, Im P; @, ,..., D, ; U, H) is an interpolating spline
system which generates 2,

Hence, given any interpolating spline system & = (X, F; @, ,..., D,, ; U, H),
it has, by Lemma 2, an interpolation property corresponding to (5.1), and,
in addition, two minimum properties hold, corresponding to (SE 1) and
(SE 2).

Some bi- and multivariate spline interpolation problems can be studied
in terms of interpolating spline systems, using tensor product methods.
Existence and uniqueness for two-dimensional interpolation and the corre-
sponding bivariate (and multivariate, respectively) minimum properties are
consequences of:

THEOREM 8. The tensor product of the interpolating spline systems
F =X F,D1,..,9,;U Hand¥ = (Y, G; ¥,,..¥V,.; V.K),F R Y :=
XY, FRGD, Q¥ 1 <pu<m!l <v<mUV, HRK),is also
an interpolating spline system.

Proof. As to (IS 1), by [15], the tensor product of two unique inter-
polation problems is a unique interpolation problem again. (IS 2) and (IS 3)
are obvious. Therefore, one needs only to verify (IS 4), i.e.,

URVNFRG L U® V)( N Ker<15“®‘l’v>.

Igugm
Ivgn
To this end, consider the spline systems £, =(X, P,, U, H) and
Z, = (Y, P,, V, K) which are generated by the given interpolating spline
systems # and ¥, respectively. By (T2) we have ImP, ® P, =
Im P, ® Im P, . By

Im(P; @ P) =Ket(P,®P)) = () Kerd,QY,),
Igugm
1gvgn
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and Theorem 5,
U@VMNFRG) =ImURV)- PLR®P) | Im(UR V) (P, ® P,
=UQ V}( {} Ker®, @‘I’,).

A nLm
1<v<n

This concludes the proof.

We show now how one can get bivariate natural spline functions using tensor
product methods. For the one-dimensional case see Greville [14], de Boor and
Lynch [7}, and Delvos and Schempp [9].

Let & and m be positive integers, ¥ <X m, and let — o <a < b < oo. Set

K?®*[q, b]
:={f: fe C*V]a, b], f*-1 1s absolutely continuous, /' € L[a, b]}.

Given m real numbers x, satisfying
a<x <xg < <Xy < b,

we define the linear interpolation functionals ¢, on K**|a, b) as follows:
D(f) = f(x) p =1, 2,..., m. Furthermore, let D¥f = /™ for f'e K&[g, b].
Denote by S,.* the space of all natural polynomial spline functions of degree
2k — 1 associated with the nodes {x; ,---, X} (cf. Greville [14], and Delvos and
Schempp [9]). Then we have the following (one-dimensional) example of an
interpolating spline system:

S = (K%, b}, 5, &y ..., @y s D¥, L¥a, bY

is a unique interpolating spline system.
This follows from [9].
Suppose now that two interpolating spline systems, corresponding to

natural polynomial spline functions, are given:
‘y = (Kz,k[aa b]v Smka 4)[ EEEREY ¢’m ; Dk: Lz[a’ b])
as above, and

T = (K¥c, d], T,5; ¥y, ¥ s DY e, d)),

where / and » are positive integers, / <{n, —o0 < ¢ <d < 0, and the
linear interpolation functionals ¥, .., ¥, are associated with nodes y,
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satisfying ¢ < y; <y, < <y, <d. T, is the corresponding space of
natural polynomial spline functions of degree 2/ — 1. Then Theorem 8
yields the following result:

S ®T = K>*a, )] ®K*c, d], S @ T,L P, @ ¥, 1 <p<m,
1 <v <n; D*® D', La, b] ® L?[c, d])

is an interpolating spline system.

Here we have the linear differential operator D* (x) D' = §%+1/ox* oy’

We now summarize some properties of the interpolating spline system
I RT.

(i) Interpolation property:

Given the interpolating spline system ¥ &)  and a function g € K>*[a, ] ®
K%Yc, d], there is one and only one u € S,,* ¥ T,! satisfying

u(xuayv):g(xu,yv) (1<#<m’1<v<n)

(ii) Representation property:
Let {s ,..., S} C S,.* and {t1 ,..., t,} C T,;! be the dual bases corresponding to
the functionals @, | S,.%,..., D, | S,* and ¥, | T,%..., ¥, | T,!, respectively.
Then the standard spline element u € S,,,* ® T, belonging to g € K2-*[a, b] ®
K2![¢, d] has the following representation:

n

Z v (D @ P )(g).

uMs

(ii)) Minimum properties:

Let g € K**[a, b] ® K*'[c, d]. Then for any spline function s, belonging to g,
we have:

@ [ [ ezt n) dsdr < [ [ (oot ) dray

for all seg—l—( N Kerd%@'z",).

lgugm
1<vgn

® [ [ (g te — e n) dxdy
<[ [ (ot — 0 0) deay

forall te S, @ T, D (( () Kerd, ® ‘PV) N Ker D* ® D‘).
lgugm
1<vgn
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