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There are two interesting temlencies in treating spline interpolation. The
first is an abstract spline theory within the framework of functional analysis.
In thi1> connectll)n the work of de fSl)ot and Lynch P3, Jerome and
Schumaker [18), Jerome and Varga [19J, Atteia [2,3], Anselone and
Laurent [1], Sard [24], Aubin [4], Lucas [20], Scheffold [26] as well as
Delvos and Schempp [9, 10] should be mentioned, the latter of which have
introduced the concept of a spline system. The second tendency is concerned
with bi- and multivariate spline problems. Here de Boor [6], Birkhoff, Schultz,
and Varga [5], Ritter [22, 23], Schultz [27], Gordon [121, Mansfield [21], and
Ti"penhauer [29} should be mentioned. Some of these authors use tensor
products for investigating multivariate problems.

It is the purpose of the present paper to generalize the concept of a spline
system in order to consider multivariate spline interpolation problems by
tensor product methods.

To achieve this, we first give in Section 1 the basic definition of a spline
system (using weaker conditions than those of Delvos and Schempp [9]),
Subsequently, existence and uniqueness of a spline element will be character
ized separately, and two upproximatitm propenil"s of spllne ekments win be
proved. The notion of a spline system given here enables us to give two
construction principles for obtaining new spline systems from known ones:
These methods are additivity and tbe use of tensor products. They are treated
in Sections 2 and 3, respectively. These construction principles enable us to
prove some results on tensor product spline systems as well as to deal with
spline pNblerns related to the work of Gordon [12] (see Section 4). Finally,
in Section 5, we consider interpolating spline systems in one and two variables.
Most of the sp}jne interpolation problems that haY~ been ;nvestigated can be
described in the framework of interpolating spline systems.

Our notion of a spline system dispenses with a topology on the spline
ground space. Thus we restrict our investigations on spline interpolation to
those topics that may be dealt with within the framework of (algebraic) vector
spaces as spline ground spaces. Topological aspects of spline systems and
their tenSQr products will be treated elseWhere.
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Some parts of the theory given in this paper have been developed in [16]
under stronger conditions on the spline ground spaces.

1. SPLINE SYSTEMS AND THEIR MINIMUM PROPERTIES

A quadruple (X, P, U, H) will be called a prespline system provided that the
following conditions hold:

(Sl) X is a real (or complex) vector space, H is a real (resp. complex)
prehilbert space with the scalar product (h, Ii) 1-+ (h I Ii) and the canonical
norm

II h II = (h I h)1/2 (h E H).

(S2) P: X ---+ X is a linear idempotent mapping.
(S3) U: X ---+ H is a linear mapping.

Let us denote prespline systems (and later on, spline systems) by script
letters &, fl, ... , and let

fp(x) := {t E X: Pt = Px} for every x E X.

In view of ordinary spline theory, X stands for the spline ground space,
H replaces the Hilbert space V, P generalizes the spline interpolation
projection, whereas U may be specialized, in a concrete case, to some
differential operator.

Given a prespline system, we define the notions of a spline element and
a spline system.

DEFINITION I. Let &: = (X, P, U, H) be a prespline system and let x E X.
Then SEX is called a spline element belonging to x with respect to &, if the
following conditions hold:

(SE 0) Ps = Px (i.e., s E fp(x).
(SE I) II US II :(: II Ut II for all t E fp(x).

The set of all spline elements belonging to x E X with respect to & will be
denoted by 9"go(x).

DEFINITION 2. A prespline system &: = (X, P, U, H) is called a spline
system, if the following additional condition holds:

(S4) Im UP .-L Im UP'.

Here Im e:p and below Ker e:p designate the image and the kernel, respec~
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tively, of a linear mapping (j), and P' is the supplementary (projection) operator
of P having the following properties:

(PI) P' = 1- P (I: identity on X);
(P2) P': X -+ X is a linear idempotent mapping;
(P3) 1m P' = Ker P, Ker P' = 1m P.

We now characterize the validity of (S4).

THEOREM 1. Let [JJJ = (X, P, U, H) be a prespline system. Then [JJJ

satisfies (S4) if and only iffor each x E X we have Px E .9'",(x).

Proof Suppose that Px E .9'",(x) for all x E X. Assume there exists an
ho E1m UP and an ho' E1m UP' such that

(ho I ho') = IX oF O.

Then ho' oF 0, and hence (ho' I ho') = f3 > O. Since hoE1m UP and
ho' E1m UP', there exist XoElm P and xo' Elm P' which satisfy

and UXo' = ho', respectively.

Consider Xl = Xo - (IX/(3) . xo' EX. By (P3) it follows that

IX P ,PXl = PXo - 73 Xo = PXo = Xo.

By hypothesis, Xo is a spline element belonging to Xl , i.e., Xo E .9'",{Xl)' On
the other hand

(UXl I Uxl) = (Uxo I UXo) - t (Uxo I UXo')

- ~ (Uxo I UXo') + ~~ (Uxo' I UXo')

I IX 1
2

= (Uxo I Uxo) - T ;
hence

11 UXI II < II UXo II.

This contradicts the fact that Xo = PXl E .9'",(xl).
Conversely, let [JJJ = (X, P, U, H) be a spline system, and let x E X. We

have to show the relation Px E .9'",(x) for all X E X. (SE 0) is immediate. To
prove (SE 1) we notice that for each t E hex) we have

t E X + Ker P = Px + Ker P.
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Thus one can express t in the form

t = Px + t'

From this we get

(t' E Ker P = 1m P').

Ut = UPx + Ut' = UPx + UP't'.

(S4) yields

II Ut 11
2 = II UPx 11

2 + II UP't' 11
2

,

and hence

II UPxll,s;; II Utl[ for any t E fp(x).

This concludes the proof.
Now we investigate the question ofuniqueness ofa spline element. In general

there is more than one spline element for a given x EX. In the case of the
Lg-splines this fact was pointed out by Jerome and Schumaker [18] and
Jerome and Varga [19].

THEOREM 2. Let [JJ = (X, P, U, H) be a spline system. Then the following
requirements are equivalent:

(S5) Ker U n Ker P = (0).
(S5') Ker U C 1m P.
(S5") For any x EX, 9',go(x) consists ofa single element, namely Px.

In (S5), (0) designates the trivial vector space having only one element. If
one of these conditions is satisfied, [JJ = (X, P, U, H) will be said to be
unique.

Proof We show (S5) ~ (S5') ~ (S5") ~ (S5).
Assume (S5) and let x E Ker U. By (PI) we have x = Px + p'x, hence,

according to (S4),

o = [I Ux 11
2 = II UPx 11

2 + II UP'x 11
2

,

i.e., UP'x = O. Thus P'x E Ker U. By (P3), P'x E Ker P, and (S5) yields
P'x = O. Therefore x = Px and hence x E 1m P. Thus Ker U C 1m P.

Now suppose Ker U C 1m P, and let x E X. According to (SE 0) each spline
element s E 9',go(x) can be written in the form

Hence

s = Px + s' (s' E Ker P = 1m P').

II Us 11 2 = II UPx 112 + II Us' 11
2

•
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Since s E 9'.gI'(x), it follows that \I US' II = 0; thus s' E Ker U, i.e., s' Elm P
by (S5'). On the other hand, s' E Ker P. Thus we have s' = 0 so that (S5") is
satisfied.

Finally, suppose (S5") holds, and let x E X be given. Assume there exists a
t E Ker P n Ker U, t =ft O. Consider

s = Px + tEX.

Obviously, Ps = Px. By (S4) we have

II Us 112 = II UPx 11 2 + II Ut 11
2

•

Since II Ut 112 = 0, it follows that s E 9'9(X), and, since s =ft Px, this contradicts
(S5").

COROLLARY 1. Let fJ' = (X, P, U, H)be a spline system and let XEX. Then:

(i) 9'9(X) is a linear manifold in X:

9'.gI'(x) = Px + (Ker U n Ker P).

(ii) The set Y'[!; ofall spline elements (each ofwhich belongs to an x E X)
is a subspace ofx:

9'9' := U 9'[!;(x) = 1m PEEl (Ker Un Ker P).
",eX

(iii) Given any x E X, there exists a unique spline element in 1m P
belonging to x, namely Px, i.e.,

Y'9(X) n 1m P = {Px}.

Px is called the standard spline element belonging to x E X.

Remark. Given a spline system fJ' = (X, P, U, H), then fJ" = (X, P', U, H)
is a spline system, too. It is called the supplementary spline system with respect
to fJ'. If Ker U =ft (0), then at most one of these spline systems is unique.

A different notion of a spline system, which is based on the conditions
(SI)-{S5) as well as on further topological properties concerning the spaces X
and H and the mappings P and U was given by Delvos and Schempp [9].
Those spline systems may be considered as unique topological spline systems
in our terminology. To construct new spline systems by tensor products
(see Section 3) we need the notion of a spline system as given in definition 2.
In general, tensor products of spline systems in the sense of Delvos and
Schempp [9] fail to be spline systems in that sense (cf. Theorem 6). In the
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following, unless otherwise stated, we take as a "spline system" the concept
defined in Definition 2.

Delvos and Schempp [9] proved two minimum properties which generalize
known results (cf. de Boor and Lynch [7]). We shall prove these minimum
properties under the weaker conditions demanded for our notion of a spline
system.

THEOREM 3. Let [Ji = (X, P, U, H) be a (not necessarily unique) spline
system; let x E X; and let So E Y',go(x). Then the following minimum properties
hold:

(SE 1) II USo II ~ II Ut llfor all t E /p(x).

(SE 2) II U(x - so)II ~ II U(x - s)llfor all sE Y',go •

Proof (SE 1) is immediate. It turns out that (SE 2) may be considered as
the supplementary minimum property with respect to (SE 1).

To show this, we first prove the following inequality for the standard spline
element Px, which lies, by Theorem 1, in Y',go(x):

II U(x - Px)11 ~ II U(x - s)jl for all s E1m P.

Indeed, given any SI E 1m P = Ker P', there exists a t1 EX + Ker P' with

(1.1)

satisfying P't1 = P'x. Since [Ji' = (X, P', U, H) is a spline system, we have

II UP'x II ~ II UtIli·

for t1 according to (1.1). As P' = 1- P, it follows that

II U(x - Px)11 ~ II U(x - sl)11 for all SI Elm P, (1.2)

since SI was an arbitrary element of 1m P.
Now each spline element So E Y',go(x) may be written in the form

So = Px + to (to E Ker Un Ker P).

From Uto = 0 we get USo = UPx, and thus

U(x - so) = U(x - Px).

By Corollary 1, (ii), any s E Y',go has the unique representation

(1.3)

(S2 Elm P, t2 E Ker U n Ker P).
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Since Ut2 = 0, it follows that

U(x - s) = U(x - S2) (S2 E 1m P).

From this, (1.2) and (1.3) we obtain

II U(x - so)1I ~ II U(x - s)1I

for any So E Y"&,(x) and any s E Y"&, .

2. CONSTRUCTION OF SPLINE SYSTEMS BY ADDITIVITY

In this section we are going to point out a construction principle
for spline systems of the following kind: Given two spline systems
&1 = (X, PI , V, H) and &2 = (X, P2 , V, H), when is (X, PI + P2 , U, H)
also a spline system? The subsequent Theorem 4 will be applicable in
connection with tensor products of spline systems (see Section 4).

THEOREM 4. Let &1 = (X, PI , U, H) and &2 = (X, P2 , U, H) be two
spline systems such that

Then!Yl := (X, PI + P2 , U, H), too, is a spline system.!Yl is unique ifat least
one of the &i is unique.

Proof First we remark that PI + P2 : X -+ X is an idempotent linear
mapping. Since Pl' P2 = 0, we have 1m P2 C Ker PI = 1m PI" and hence
1m UP2 C 1m UP1'. Since &1 is a spline system, by (S4)

(2.1)

Again by (S4), we get

(VP1x I V(I - P1)y) = 0 for all (X,Y)EX X X. (2.2)

(2.3)for all (x, y) E X X X.

From (2.1) it follows that

(UPlx I - UP2 y) = 0

Addition of (2.2) and (2.3) yields

(UPlx I V(l - PI - P2)y) = (VP1x I V(P1 + P2)' y) = 0 (2.4)

for all (x, y) E X X X. Similarly,

(2.5)
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for all (x, y) E X X X. Hence

for all (x, y) E X X X, i.e.,

Thus Bl is a spline system.
To prove the uniqueness part of Theorem 4, we first show

(2.6)

(i = 1,2), and hence (2.6).
Suppose one of the spline systems f!lJ1 or f!lJ2 is unique, say f!lJ1' Since

Ker(P1 + P2) C Ker P1 , it follows by (S5) that

Ker(P1 + P2) n Ker U = (0).

This concludes the proof.

3. TENSOR PRODUCTS OF SPLINE SYSTEMS

In this section we use tensor products to get multivariate spline systems.
We restrict ourselves to the bivariate case. By induction, our results may be
extended to higher dimensions.

Our main result states that the tensor product of two spline systems is
itself a spline system. Before proving it we briefly recall some facts concerning
tensor products of vector spaces and linear mappings (cf., Greub [13]).

Let X and Ybe real (or complex) vector spaces, and Xl' X2 subspaces of X.
Then:

(TI) (Xl ® Y) n (X2 ® Y) = (Xl n X2) ® Y.

(TI') (Y ® Xl) n (Y ® X2) = Y ® (Xl n X2).

Given linear mappings

ep: X -+ X, 0/: Y -+ r-,
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where X, X, Yand 1'" are real (or complex) vector spaces, following identities
hold:

(T2) Im(ep (8) if) = (1m ep) (8) (1m if),

(T3) Ker(ep (8) if) = (Ker ep) (8) Y + X (8) (Ker if).

Let X and Y be real (respectively complex) vector spaces, and let

if>: X ~ X,

be linear mappings. Then we have

(T4) (if> (8) (J) . (ep (8) if) = (if> • ep) (8) ({J . if)·

We introduce now a scalar product on the (algebraic) tensor product of two
(real or complex) prehilbert spaces Hand K with scalar products (hI Ih2)H
and (k1 I k 2)K, respectively. To this end, let {hi}ief and {kj};el be, respectively,
Hamel bases of Hand K. Given two elements ZI , Z2 E H 0 K:

Z1 = L L aij • Xi 0 yj,
ief jel

Z2 = L L bkl • Xk (8) Yl ,
kef leI

where each of the inequalities aiJ =1= 0, bkl =1= °is satisfied for only a finite
number of pairs (i,j) E I X J resp. (K, l) E I X J, we define (cf. Dixmier [II],
Schatten [25]):

(Z1 I Z2)H@K := L L L L aij • bkl • (Xi I Xk)H(Yj IYI)K'
ief jel kef leI

It turns out that (ZI IZ2)H0K is a scalar product on H 0 K which arises
canonically from the scalar products given on Hand K. The value of
(ZI I Z2)H@K is independent of the choice of the Hamel bases {hi}ief and
{kj};e/' In writing H 0 K, where Hand K are prehilbert spaces, we mean the
algebraic tensor product ofHand K provided with this canonical scalar product
which makes H 0 K a prehilbert space.

DEFINITION 3. Let f!JJ = (X, P, U, H) and fl = (Y, Q, V, K) be two spline
systems (or prespline systems). Then

90ft:= (X0 Y,P0Q, U0 V, H0K)

is called the tensor product of f!JJ and fl.

The following lemma is obvious:
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LEMMA 1. Let fJJ = (X, P, U, H) and !l = (Y, Q, V, K) be two prespline
systems. Then their tensor product, (X @ Y, P @ Q, U @ V, H @ K), is
again a prespline system.

THEOREM 5. Given two spline systems f!J! = (X, P, U, H) and !l =
(Y, Q, V, K), then[//' @!l = (X ® Y, P @ Q, U ® V, H @K)isalsoaspline
system.

Proof. By Lemma 1 we only have to verify the relation (S4) for the tensor
product mappings:

Im(U @ V) . (P @ Q) -l Im(U @ V) . (P ® Q)'.

To show this, we observe that, by (P3) and (T3),

1m (P ® Q)' = Ker P @ Q = (Ker P) @ Y + X @ (Ker Q)

= Ker P@KerQ EB Ker P@KerQ' EB Ker P' ® Ker Q,

EB denoting direct sum. Therefore, any Z E Im(P ® Q)' has a unique
decomposition

such that

Let

m

%1 = I x .. ®Y..
..=1

n

Z2 = LXv @Y/
v=1

s

Zo = I aa @ba
0-=1

(x.. E Ker P, Y.. E Ker Q),

(xv E Ker P, y/ E Ker Q'),

(x.' E Ker p"YP E Kef Q).

(a" E 1m P, ba E 1m Q)

be an arbitrary element of 1m P ® Q = 1m P ® 1m Q (by (T2)).
Consider

s m

= I: L (Uaa I UX..)H . (Vb" I VY..)K'
<1=1 J,J.=1
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Since, by (S4), Uaa E 1m UP and Ux" E 1m UP' for all a E {I,... , s} and
fl- E {I,... , m}, as f!J' is a spline system, we have

for all Zo E 1m P ® Q. In an analogous manner we can show that

s n

«U ® V)zo I (U ® V)Z2)H@K = L L (Uaa I UXv)H . (Vba I Vji/)K = 0
a=l v=l

for all Zo E 1m P ® Q, since f!J' is a spline system. Similarly, by (S4) for fL,

s r

«U ® V)zo I (U ® V)Za)H@K = L L (Uaa [ UXo')H . (Vba I VYp)K = 0
a=l p~l

for all Zo E 1m P ® Q. Thus we have for all z E Im(P ® Q)' = Ker P ® Q:

(U ® V)z .1 Im(U ® V) . (P ® Q),
i.e.,

Im(U ® V) . (P ® Q) .1 Im(U ® V) • (P ® Q)'.

The last theorem assures that given any z = L:=l Xv ® Yv E X ® Y, the
element (P ® Q)z lies in 9'&,@..p(z). The standard spline element (P ® Q)z
can easily be computed if the standardspline elements Pxvand Qyv (1 :( v :( n)
are known, since

n

(P ® Q)z = L Pxv ® Qyv .
v=l

We now ask: when is (P ® Q)z the only spline element belonging to z with
respect to f!J' ® fL?

THEOREM 6. Let f!J' ® fL = (X ® Y, P ® Q, U ® V, H ® K) be the
tensor product oftwo spline systems. f!J' ® fL is unique ifand only ifat least one
of the following statements holds:

(i) X = (0) or Y = (0).
(ii) Ker U = (0) and Ker V = (0).

(iii) Ker P = (0) and Ker Q = (0).
(iv) Ker U = (0), Ker P = (0) and Ker V n Ker Q = (0).
(v) Ker V = (0), Ker Q = (0) and Ker Un Ker P = (0).

Proof We first show the sufficiency of any of the conditions (i)-(v). To do
this we have to show that each of these conditions implies:

Ker(U ® V) n Ker(P ® Q) = (0). (3.1)
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(3.2)
Ker(U (8) V) = (Ker U) (8) Y + X (8) (Ker V),

Ker(P (8) Q) = (Ker P) (8) Y + X (8) (Ker Q).

If X = (0), then Ker U = (0), and hence Ker(U (8) V) = (0); thus & (8)!l
is unique. Similarly, if Y = (0).

If Ker U = Ker V = (0), then Ker(U (8) V) = (0), and hence & (8) !l- is
unique.

If (iii) is satisfied, then Ker(P (8) Q) = (0), and thus Ker(U (8) V) n
Ker(P (8) Q) = (0).

Suppose (iv) holds. Then:

Ker(U (8) V) = X (8) Ker V,

Ker(P (8) Q) = X (8) Ker Q,

and by (TI'),

Ker(U (8) V) n Ker(P (8) Q) = X (8) (Ker V n Ker Q) = (0).

If we assume (v), property (TI) yields

Ker(U (8) V) n Ker(P (8) Q) = (Ker Un Ker P) (8) Y = (0).

The neccessity is proved as follows. Suppose (3.1) is satisfied. Assume none
of the conditions

(A) Ker U = (0) and Ker P = (0),
(B) Ker U = (0) and Ker V = (0),
(C) Ker P = (0) and Ker Q = (0),
(D) Ker V = (0) and Ker Q = (0)

holds. Then it follows that

(Ker P) (8) (Ker V) + (Ker U) (8) (Ker Q) =1= (0). (3.3)

Since, by (3.2),

(Ker P) (8) (Ker V) + (Ker U) (8) (Ker Q) C Ker(U (8) V) n Ker(P (8) Q),

(3.3) contradicts (3.1). Hence at least one ofthe conditions (A), (B), (C) or (D)
must be satisfied.

If (A) holds, then

Ker(U (8) V) n Ker(P (8) Q) = X (8) (Ker V n Ker Q);

hence X = (0) or Ker V n Ker Q = (0). Thus (i) of (iv) is satisfied.
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(B) is (ii) and (C) is (iii).
Finally, let (D) be satisfied. Then we have
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Ker(U ® V) ('I Ker(P ® Q) = (Ker U ('I Ker P) ® Y.

This yields (i) or (v).
From Theorem 6 we see that the validity of the uniqueness condition (S5)

for both (X, P, U, H) and (Y, Q, V, K) does not imply that their tensor
product is also unique. This is why the tensor product of two spline systems
in the sense of Delvos and Schempp [9] fails to be such a spline system.

4. SOME BIVARIATE SPLINE SYSTEMS AND THEIR MINIMUM PROPERTIES

Using Theorems 4 and 5 we can construct some bivariate spline systems
and prove corresponding minimum properties.

COROLLARY 2. Let two spline systems & = (X, P, U, H) and .f2 =
(Y, Q, V, K) be given. If Z E X ® Y and So E 9"&'@.2(z), then the following
bivariate minimum properties hold:

(i) II(U ® V) So IIH@K ~ II(U ® V) s IIH@Kfor every s E fp@Q(z),

(ii) II(U ® V)(z - so)IIH@K ~ II(U ® V)(z - s)IIH@Kforeverys E 9"&'@o2'

In particular, taking z = L:~l XT® YT , we have the following properties ofthe
bivariate standard spline element:

(i') II(U ® V)(L:~l PXT® QYT)IIH@K ~ II(U ® V)s IIH@K
for all s E fp@Q(z),

(ii') [I(U ® V)(L:~l (xT ® YT - PXT ® QYT»!lH@K ~ II(U ® V)(z - S)!lH@K
for any s E 9"&'®.2 .

COROLLARY 3. Let & = (X, P, U, H) and .f2 = (Y, Q, V, K) be two spline
systems. Then ~ := (X ® Y, P ® Q + P' ® Q', U ® V, H ® K) is also a
spline system. Hence the following minimum properties hold, given any
z EX ® Y and So E 9"",(z):

(i) !I(U ® V)so IIH@K ~ I\(U ® V)s IIH@Kfor all S E fp@Q+p'@Q{z),

(ii) II(U ® V)(z - SO)!lH@K ~ II(U ® V)(z - s)!lH@Kfor all s E 9"", .

By a similar construction we get the following bivariate spline system,
which is closely related to a problem considered by Gordon [I2].
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THEOREM 7. Let fIJ = (X, P, U, H) and f2 = (Y, Q, V, K) be two spline
systems, and I: X ~ X and J: Y -+ Y the identity mappings on X and Y,
respectively. Then,

:T := (X @ Y, I @ Q + P @J - P @ Q, U @ V, H @K)

is also a spline system. It is unique ifboth fIJ and f2 are unique. Let z E X @ y
and So E 9'.r(z). Then

(i) II(U @ V)so IIH®K ::::;; !I(U @ V)s IIH~K for all s E A®o+P®J-P®o(z),

(ii) II(U @ V)(z - so)IIH®K ::::;; II(U @ V)(z - S)IIH®K for all s E 9'.r .

In particular, we have for the standard spline element,

(i') II(U @ V)(I@ Q + P @J - P @ Q)zllu®K::::;; II(U @ V)sIlH®Kfor
all s E A®o+P®J-P®o(z),

(ii') II(U @ V)(P' @ Q')z IIH®K ::::;; II(U @ V)(z - s)IIH®Kfor all s E 9'.r.

Proof We have only to show that the hypotheses of Theorem 4 are
satisfied. To this end, observe that:

I@ Q + P @J - P @ Q = I@ Q + P @ Q'.

Thus

(I @ Q) . (P @ Q') = (I . P) @ (Q . Q') = 0

and

(P @ Q') . (I @ Q) = (P . I) @ (Q' . Q) = O.

By Theorem 5,

clIt:= (X@ Y,/®Q, U@V,H@K)

and

"f/:= (X@Y,P@Q', U@V,H@K)

are spline systems, and hence :T is a spline system.
Now we establish the uniqueness condition

Ker U @ V C Im(l ® Q + P @ J - P @ Q),

assuming that (X, P, U, H) and (Y, Q, V, K) satisfy (S5).
To prove this, let Sand T be two linear projection operators mapping

a vector space Z into itself. If ST = 0, then for any z E 1m T:

z = Tz = Tz + Sz = (T + S)z,
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(4.1)
(4.2)

i.e., Z E Im(T + S) and hence 1m T C Im(T + S). Similarly, if TS = 0, then
ImSClm(T+ S).

Applying this to our problem, we get

1m P ® J C Im(P ® J + I ® Q - P ® Q),

1m I ® Q C Im(P ® J + I ® Q - P ® Q).

Since f?/' and !t are unique spline systems,

(Ker U) ® Y C (1m P) ® Y = Im(P ® J),
X ® (Ker V) C X ® (1m Q) = Im(I ® Q).

By (4.1) and (4.2),

Ker(U ® V) = X ® (Ker V) + (Ker U) ® y

C Im(P ® J + I ® Q - P ® Q).

A connection with the work of Gordon [12] is obtained by specializing P
and Q to be operators arising from interpolationfunctionals, and by providing
X and Y with appropriate topologies. Topological results concerning spline
systems will be given elsewhere, but a general treatment of spline systems
arising from interpolation problems is given in the next section.

5. INTERPOLATING SPLINE SYSTEMS

Most spline systems that occur in applications arise from certain spline
interpolation problems; for example, from natural polynomial spline functions
(cf. Greville [14)), L-splines (cf. Schultz and Varga [28], and Delvos and
Schempp [10)) and Lg-splines (cf. Jerome and Schumaker [18]).

To deal with the corresponding concept of an interpolating spline system
let us recall the following notion of an interpolation problem (cf. [17)).

Given ~ = (X, F; WI"'" Wm), where X is a real or complex vector space,
Fan m-dimensional subspace of X, and WI, ..., Wm linear functionals on X,
one can raise the following interpolation problem:

Let x E X. Does there exist an f E F satisfying

Wu(f) = CPu(x) (1 ~ J1, ~ m)? (5.1)

Is it unique?
An answer is given by the following lemma (Davis [8)):

LEMMA 2. Let ~ = (x, F; CPI ,..., CPm) be an interpolation problem. A
necessary and sufficient condition that for every x E X there exists exactly
one fEF satisfying (5.1) is that the restrictions CPI IF, ... , CPm IF of the CPu's
to F are linearly independent in F*, the algebraic dual ofF.

In this case ~ will be called a unique interpolation problem.
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DEFINITION 4. :F = (X, F; cfJ1 " .• , cfJm ; U, If) is called an interpolating
spline system, provided:

(IS 1) .170 := (X, F; epl ,..., epm) is a unique (real or complex) inter
polation problem.

(IS 2) H is a real (respectively, complex) prehilbert space with scalar
product (h I ii) and canonical norm II h II = (h i h)lfZ.

(IS 3) U: X ->- H is a linear mapping.
(IS 4) The following orthogonality relation holds:

U(F) -l U La Ker cfJ,,).

There is a dose relation between interpolating spline systems and finite
spline systems (i.e., spline systems (X, P, U, H) with dim 1m P < 00):

PROPOSITION 1. Given an interpolating spline system § = (X, F;
cfJ1 , ••• , cfJm ; U, H), there is a uniquely determined finite spline system
f!jJ = (X, P, U, H) generated by § in a canonical way. Conversely, any finite
spline system & = (X, P, U, H) may be generated by some interpolating spline
system which is, however, not uniquely determined.

Proof Let 57 = (X, F; cfJ1 ,.,., $m ~ U, H) be an interpolating spline
system. Since the corresponding interpolation problem has a unique solution,
there exists a unique dual base {f1 , ..• ,fm} C F satisfying

cfJ (f.,) = D = 10 for I-t *" vi (1 ~ I-t ~ m).
" "V 11 for I-t = vI 1 ~ v ~ n

Now
m

P: x f--+ L i ... ·4'>...(x),
,,~1

is a linear projection operator. It remains to show that (IS 4) implies (84).
Observe that UF = 1m UP. For the supplementary operator P' we have
1m P' = Ker P = n:=l Ker (PI' ' The last equality is proved as follows: Given
x E Ker P, i.e.,

m

o = Px = L i" . (Pix),
~=1

the linear independence of the 1...'8 yields <Pix) = 0 (1 ~ fL ~ m); hence
x E n;:'-l Ker cfJ". Obviously n=~l Kef $" C Ker P. Thus (IS 4) implies

1m UP -l 1m UP',

and so f!jJ = (X, P, U, H) is a spline system which is finite since dim 1m P =
dimF = m < 00.
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Now let fJ = (X, P, U, H) be a finite spline system with dim 1m P =
m < 00. Then there exist m linearly independent linear functionals
cp1 ,••• , CPm E (1m P)*. Let {f1 , ...Jm} be the corresponding dual base in 1m P,
and define (/J" = cp" . P. Then we have

and, since

V(lm P) = 1m VP 1- 1m VP' = V (j} Ker (/J,,),

it follows that § = (X, 1m P; (/J1 '"0' <Pm ; V, H) is an interpolating spline
system which generates :?JI.

Hence, given any interpolating spline system § = (X, F; <P1 , ••• , <Pm ; V, H),
it has, by Lemma 2, an interpolation property corresponding to (5.1), and,
in addition, two minimum properties hold, corresponding to (SE 1) and
(SE 2).

Some bi- and multivariate spline interpolation problems can be studied
in terms of interpolating spline systems, using tensor product methods.
Existence and uniqueness for two-dimensional interpolation and the corre
sponding bivariate (and multivariate, respectively) minimum properties are
consequences of:

THEOREM 8. The tensor product of the interpolating spline systems
§ = (X, F; (/J1 , ... , (/Jm; V, H) and (1 = (Y, G; 0/1 "'" o/n; V, K),§ ® rJ :=
(X ® Y, F ® G; <P" ® o/p: I ~ p., ~ m, I ~ v ~ n; U ® V, H ® K), is also
an interpolating spline system.

Proof As to (IS 1), by [15], the tensor product of two unique inter
polation problems is a unique interpolation problem again. (IS 2) and (IS 3)
are obvious. Therefore, one needs only to verify (IS 4), i.e.,

(V ® V)(F ® G) ...L (U ® V) ( n Ker (/J" ® o/p).
l<t.L~m
l~v<n

To this end, consider the spline systems :?JI1 = (X, P1 , V, H) and
:?JI2 = (Y, P2, V, K) which are generated by the given interpolating spline
systems § and rJ, respectively. By (T2) we have 1m P1 ® P2 =
1m P1 ® 1m P2 • By

Im(P1 ® P2)' = Ker(P1 ® P2) = n (Ker (/J" ® o/p),
l<l.L<m1.;;p.;;n
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and Theorem 5,
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(U ® V)(F <2) G) = Im(U ® V) . (Pl ® PJ -i Im(U ~ V)· (Pl ® P2)'

= (U ® V} ( (\ Ker <P" ® '¥.).
l<p~m

1(.("

This concludt;s the proof.
We show noW how one can get bivariate natural spline functions using tensor

product methods. For the one-dimensional case see Greville [14], de Boor and
Lynch [7], and Delvos and Schempp [9].

Let k and m be positive integer~, k ~ m, and let - 00 < t1 < b < co. Set

Kura, &J
:= U;fE elk-ll[a, b], j<k-l) js absolutely continuDug, j<kJ EV[a, bJ}.

Given m real numbers Xu satisfying

we defint; tht; linear interpolation funl:tionals <Pu on KZ·"Ia, b] as follows;
<Pi f) = f(xJ, fL = 1,2,... , m. Furthermore, let Dkf= flk) forfE KU[a, b),
Denote by Sr/ the space of all narwal polynomial spline? functions of degree
2k - I associ3ted with the nodes {Xl'"'' X m} (cf. Greville [14], and Delvos and
Schempp [9]). Then we have the fCJl10wing (one-dimensional) example of an
interpolating spline system:

is a unique interpolating spline sysre?m.
This follows from [9].
Suppose noW that two interpolating spline systems, corresponding to

natural polynomial spline functions, are given:

as above, and

where I and n are positive integers, I:S;; n, - 00 < c <: d < 00, and the
linear int~rpolati()n functionah 'fIi ,',', lJ'" are asso<:iated with nodes Yv
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satisfying c ~ Y1 < Y2 < ... < Yn ~ d. TnL is the corresponding space of
natural polynomial spline functions of degree 21 - 1. Then Theorem 8
yields the following result:

Y' ® or := (K2.k[a, b] ® K2,I[C, d], Smk ® Tnl; (/JjL ® If'v: 1 ~ p, ~ m,

1 ,;:;; v ,;:;; n; Dk ® Dl, V[a, b] ® V[c, d])

is an interpolating spline system.
Here we have the linear differential operator Dk ® D 1= 8k+l/8xk 8y l.
We now summarize some properties of the interpolating spline system

Y' ®or.

(i) Interpolation property:

Given the interpolating spline system Y' ® or and a function g E K2.k[a, b] ®
K2.1[C, d], there is one and only one UE Smk ® Tnl satisfying

U(XjL ,Yv) = g(XjL , Yv) (1 ,;:;; p, ~ m, 1 ~ v ~ n).

(ii) Representation property:

Let {Sl ,... , sm} C Smk and {t i , ... , tn} C Tnl be the dual bases corresponding to
the functionals (/Jl ISmk, ... , (/Jm ISmk and If'1 I Tnl, ... , If'n I Tnl, respectively.
Then the standard spline element UE Smk ® Tnl belonging to g E K2.k[a, b] ®
K2.1[C, d] has the following representation:

m n

U = L L SjL . tv . «(/JjL ® If'v)(g).
jL~1 v~1

(iii) Minimum properties:

Let g E K2.k[a, b] ® K2,l[c, d]. Then for any spline function So belonging to g,
we have:

f bfd ( Ok+l )2 fb fd ( Ok+l )2
(a) a C OXk Oyl SO(X, y) dx dy ~ a C OXk Oyl S(X, y) dx dy

for all s E g + ( n Ker (/JjL ® If'v).
l~u~m

l~v~n

f bfd ( 8k+1 )2
(b) a c OXk Oyl (g - So)(X, y) dx dy

,;:;; f f (O::~~l (g - t)(X, y)f dx dy

for all t E Smk ® Tnl EB (( n Ker (/JjL ® If'v) n Ker Dk ® Dl).
L"u<m
l~v(;n
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